Impact of defoliation intensity and frequency on N uptake and mobilization in Lolium perenne.
نویسندگان
چکیده
The aim of the study was to evaluate the impact of defoliation intensity, defoliation frequency, and interactions with N supply on N uptake, N mobilization from and N allocation to roots, adult leaves, and growing leaves. Plants of Lolium perenne were grown under two contrasted N regimes. Defoliation intensity treatments consisted of a range of percentage leaf area removal (0, 25, 50, 75, or 100%). These treatments were applied in parallel to a set of plants previously undefoliated, and to a second set of plants which had been defoliated several times at a constant height. A (15)N tracer technique was used to quantify N uptake, mobilization, and allocation over a 7 d period. A significant reduction in plant N uptake was observed with the removal of more than 75% of lamina area, but only with high N supply. As defoliation intensity increased, the amount of N taken up and subsequently allocated to growing leaves during the labelling period was maintained at the expense of N allocation to roots and adult leaves. Increasing defoliation intensity increased the relative contribution of roots supplying mobilized N to growing leaves and decreased the relative contribution of adult leaves. Defoliation frequency did not substantially alter N uptake, mobilization, and allocation between roots, adult and growing leaves on a plant basis. However, tiller number per plant was largely increased under repeated defoliation, hence indicating that allocation and mobilization of N to growing leaves, on the basis of individual tillers, was decreased by defoliation frequency.
منابع مشابه
Depletion of carbohydrate reserves limits nitrate uptake during early regrowth in Lolium perenne L.
The mechanisms linking C/N balance to N uptake and assimilation are central to plant responses to changing soil nutrient levels. Defoliation and subsequent regrowth of grasses both impact C partitioning, thereby creating a significant point of interaction with soil N availability. Using defoliation as an experimental treatment, we investigated the dynamic relationships between plant carbohydrat...
متن کاملEffects of a stay-green mutation on plant nitrogen relations in Lolium perenne during N starvation and after defoliation.
The stay-green mutation of the nuclear gene sid results in inhibition of chlorophyll degradation during leaf senescence in grasses, reducing N remobilization from senescing leaves. Effects on growth of Lolium perenne L. were investigated during N starvation (over 18 d) and after severe defoliation, when leaf growth depends on the remobilization of internal N. Rates of dry mater production, part...
متن کاملShort-term changes in xylem N compounds in Lolium perenne following defoliation.
Previous studies have indicated that an increased asparagine to glutamine ratio (Asn : Gln) occurs in the xylem fluid of Lolium perenne 24 h after defoliation. However, the absolute changes in Asn and Gln leading to the increased Asn : Gln ratio are unknown. The present study tested the hypotheses that: (1) defoliation-induced changes in xylem amino acid composition occur in L perenne within th...
متن کاملDoes gibberellin biosynthesis play a critical role in the growth of Lolium perenne? Evidence from a transcriptional analysis of gibberellin and carbohydrate metabolic genes after defoliation
Global meat and milk production depends to a large extent on grazed pastures, with Lolium perenne being the major forage grass in temperate regions. Defoliation and subsequent regrowth of leaf blades is a major and essential event with respect to L. perenne growth and productivity. Following defoliation, carbohydrates (mainly fructans and sucrose) have to be mobilized from heterotrophic tissues...
متن کاملبررسی تاثیر تنش نیکل و همزیستی اندوفایت نئوتیفودیوم بر برخی شاخص های رشد و جذب نیکل در گیاه Lolium perenne
Lolium perenne has symbiosis relationships with an important group of endophytes genus Neotyphodium. Agronomic traits of this plant and its resistance to biotic and abiotic stresses are affected by Neotyphodium spp., resulting to changes in its physiology and morphology. Effect of Nickel and endophyte symbiosis on growth parameters and nickel uptake in two different natural populations are inve...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of experimental botany
دوره 57 4 شماره
صفحات -
تاریخ انتشار 2006